
Java Media Framework basics

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. A simple audio player.. 5
3. JMF user interface components 9
4. Conceptual JMF .. 13
5. Broadcasting and receiving media 16
6. Wrapup and resources .. 22

Java Media Framework basics Page 1 of 25

Section 1. About this tutorial

What is this tutorial about?
The Java Media Framework (JMF) is an exciting and versatile API that allows Java
developers to process media in many different ways. This tutorial provides an overview of
some of the major features of JMF, mainly through the use of working examples. Upon
completion of this tutorial, you will understand the major players in the JMF architecture. You
also will have worked directly with JMF, using live examples and source code that may be
extended for more specific purposes.

Topics covered in this tutorial are as follows:

• Tips for downloading and installing JMF

• Major JMF classes and their uses in the JMF architecture

• Playing local media files

• Presenting a graphical user interface (GUI) for media access and manipulation

• Broadcasting media over a network

• Receiving broadcast media over a network

Almost any type of media manipulation or processing is possible through JMF. A
comprehensive discussion of all the features JMF has to offer is well beyond the scope of
this tutorial. Instead, we'll use three simplified media applications to learn about the
framework's building blocks. In this way, the tutorial will prepare you for future study and the
implementation of more specific applications.

Should I take this tutorial?
This tutorial will walk you through the basics of working with JMF. To accomplish this, we'll
create three separate working example applications. Each of these examples will build upon
the previous examples, displaying different aspects of JMF's functionality.

The examples in this tutorial assume that you have used and are already familiar with the
Java programming language. In addition to the core Java and JMF classes, we will be
working with some of the Java AWT and Swing classes (for presenting a GUI), as well as
some Java networking classes (for transmitting media over a network). Some familiarity with
both the GUI and networking classes will help you more quickly understand the discussion
and examples here, but are not prerequisites of this tutorial.

The example applications we'll work with are as follows:

• A simple audio media player (the JMF HelloWorld application): This
command-line-driven media player lets you play most audio types by simply specifying the
media file name on the command line. The audio media player demo showcases mainly
JMF-specific classes.

• A GUI-driven media player: We'll use built-in JMF interface components to build the GUI,
so little GUI programming experience will be necessary for this exercise. The media viewer
demo uses some of the Java AWT and Swing classes to present GUI components to the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 25 Java Media Framework basics

user.

• A media broadcasting application: This application allows a local media file to be
transmitted over a network. The application is flexible enough to transmit media only to a
specified network node, or to broadcast it to all the nodes within a subnet. This demo uses
some of the Java networking APIs to allow media transmission over a network.

As part of the third exercise, we'll modify the GUI-enabled media player to let it receive and
play broadcast media.

See Resources on page 23 for a listing of articles, tutorials, and other references that will help
you learn more about the topics covered in this tutorial.

Installation requirements
To run the examples in this tutorial, you need the following tools and components:

• The Java 2 platform, Standard Edition, to compile and run the demo applications

• The Java Media Framework, version 2.1.1a or above

• A properly installed and configured sound card
• One or more test machines
• The demo source files in mediaplayer.jar

The final demo application shows how JMF can be used over a network. If necessary, the
demo can be run on a single machine using the machine as both the transmitter and
receiver. To see the full power of using JMF over a network, however, you will need at least
two machines that are reachable on the same network.

See Resources on page 23 to download the Java 2 platform, complete source files, and other
tools essential for the completion of this tutorial.

Downloading the installer
The first step in installing the JMF on your machine is to download the installer through the
JMF home page, which also contains links to the JMF source code and the API
documentation. See Resources on page 23 for a link to download JMF.

Currently, JMF has versions for Windows, Solaris, Linux, and a pure-Java version that works
on any machine with a JVM. To increase performance, you should download the version that
is specific to your OS. Any code that is written and compiled with an OS-specific version of
JMF is portable across other OSs. For example, if you download the Solaris version of JMF
and compile a number of classes, those same classes can be used on a Linux machine
without any problems.

Alternatively, you may choose to download the pure-Java, or "cross-platform," version of
JMF. This version doesn't employ any OS-specific libraries. The cross-platform version is a
good choice if your OS doesn't have its own version of JMF installed or if you don't know
what OS the target machine will be running.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 3 of 25

mediaplayer.jar

Installing JMF
After you've downloaded the JMF installer to your desktop, double-click the installer icon.

Most installers have an option to install native libraries in a system directory; for example, the
Windows installer will present an option to "Move DLLs to Windows/System directory." For
best results, choose this option, because it ensures the OS-specific libraries will be installed
correctly.

You should also choose the option to update the system CLASSPATH and PATH variables
during installation. If this option is turned off, remember to include the JMF jar files in the
classpath when you compile or run any of the examples in this tutorial.

About the author
Eric Olson is a software developer at Retek Inc. He has four years of experience with the
Java platform, and is experienced with many different Java-based technologies, including
JMF, Jini, Jiro, JSP, servlets, and EJBs. Eric graduated from the University of St. Thomas in
St. Paul, MN, with a degree in Computer Science. He has worked for IBM on the
SanFrancisco Project and the WebSphere Business Components initiative. He has also
worked for Imation Corp. on storage appliances. He currently is developing Web-based
software solutions for the retail industry. In his spare time, Eric collaborates with Paul
Monday on Stereo Beacon -- a distributed peer-to-peer media player based on JMF. Contact
Eric at zpalffy@yahoo.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 25 Java Media Framework basics

mailto:zpalffy@yahoo.com

Section 2. A simple audio player

Overview
In this section, we'll walk through the first exercise of creating a simple audio player. This
example introduces you to the Manager class and the Player interface, which are two of
the major pieces in building most any JMF-based application.

The functional goal of this example is to play a local audio file through a command-line
interface. We'll walk through the source code and review what is happening in each line.
After completing this section, you will have a demo application on which you can play any
audio file type supported by JMF, including MP3, WAV, and AU, among many others.

Refer to the SimpleAudioPlayer.java file in the source code distribution to follow this
exercise.

Importing the necessary classes
The first few lines of the SimpleAudioPlayer class include the following calls, which
import all necessary classes:

import javax.media.*;

import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.net.MalformedURLException;

The javax.media package is one of the many packages defined by JMF. javax.media is
the core package, containing the definitions of the Manager class and the Player interface,
among others. We'll focus on the Manager class and the Player interface in this section,
and deal with some of the other javax.media classes in later sections.

In addition to the import javax.media statement, the above code fragment includes
several import statements that create the input to our media player.

The Player interface
In the next code fragment, the public class SimpleAudioPlayer and the Player instance
variable are defined:

public class SimpleAudioPlayer {

private Player audioPlayer = null;

The term Player may sound quite familiar, because it is based on our common use of
audio- and video-based media players. In fact, instances of this interface act much like their
real-life counterparts. Players expose methods that relate to the functions of a physical
media player such as a stereo system or VCR. For example, a JMF media Player has the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 5 of 25

ability to start and stop a stream of media. We will use the start and stop functionality of the
Player throughout this section.

Creating a Player over a file
JMF makes it quite simple to obtain a Player instance for a given media file. The Manager
class acts as a factory for creating many of the specific interface types exposed in JMF,
including the Player interface. Therefore, the Manager class is responsible for creating our
Player instance, as shown below:

public SimpleAudioPlayer(URL url) throws IOException,
NoPlayerException,

CannotRealizeException {
audioPlayer = Manager.createRealizedPlayer(url);

}

public SimpleAudioPlayer(File file) throws IOException,
NoPlayerException,

CannotRealizeException {
this(file.toURL());

}

If you're following along with the source for this section, you may have noticed that the
Manager class contains other methods for creating Player instances. We'll explore some of
these methods -- such as passing in instances of a DataSource or MediaLocator -- in a
later section.

Player states
JMF defines a number of different states that a Player instance may be in. These states are
as follows:

• Prefetched

• Prefetching

• Realized

• Realizing

• Started

• Unrealized

Working with states
Because working with media is often quite resource intensive, many of the methods exposed
by JMF objects are non-blocking and allow for asynchronous notification of state changes
through a series of event listeners. For example, a Player must go through both the
Prefetched and Realized states before it may be started. Because these state changes can
take some time to complete, a JMF media application can assign one thread to the initial
creation of a Player instance, then move on to other operations. When the Player is
ready, it will notify the application of its state changes.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 25 Java Media Framework basics

In a simple application such as ours, this type of versatility is not so important. For this
reason, the Manager class also exposes utility methods for creating Realized players.
Calling a createRealizedPlayer() method causes the calling thread to block until the
player reaches the Realized state. To call a non-blocking player-creation method, we use
one of the createPlayer() methods on the Manager class. The following line of code
creates a Realized player, which we need in our example application:

audioPlayer = Manager.createRealizedPlayer(url);

Starting and stopping the Player
Setting up a Player instance to be started or stopped is as simple as calling the easily
recognized methods on the Player, as shown here:

public void play() {
audioPlayer.start();

}

public void stop() {
audioPlayer.stop();
audioPlayer.close();

}

Calling the play() method on the SimpleAudioPlayer class simply delegates the call to
the start() method on the Player instance. After calling this method, you should hear the
audio file played through the local speakers. Likewise, the stop() method delegates to the
player to both stop and close the Player instance.

Closing the Player instance frees any resources that were used for reading or playing the
media file. Because this is a simple example, closing the Player is an acceptable way of
ending a session. In a real application, however, you should carefully consider whether you
want to get rid of the Player before you close it. Once you've closed the player, you will
have to create a new Player instance (and wait for it to go through all of its state changes)
before you can play your media again.

Creating a SimpleAudioPlayer
Finally, this media player application contains a main() method, which lets it be invoked
from the command line by passing in the file name. In the main() method, we make the
following call, which creates the SimpleAudioPlayer:

File audioFile = new File(args[0]);
SimpleAudioPlayer player = new SimpleAudioPlayer(audioFile);

The only other thing we have to do before we can play our audio file is to call the play()
method on the created audio player, as shown here:

player.play();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 7 of 25

To stop and clean up the audio player, we make the following call, also found in the main()
method:

player.stop();

Compiling and running the SimpleAudioPlayer
Compile the example application by typing javac SimpleAudioPlayer.java at a
command prompt. This creates the SimpleAudioPlayer.class file in the working
directory.

Then run the example application by typing the following at a command prompt:

java SimpleAudioPlayer audioFile

Replace audioFile with the file name of an audio file on your local system. Any relative file
names will be resolved relative to the current working directory. You should see some
messages indicating the file that is being played. To stop playing, press the Enter key.

If compilation failed, check to make sure that the JMF jar files are included in the current
CLASSPATH environment variable.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 25 Java Media Framework basics

Section 3. JMF user interface components

Playing video
In the previous section, we walked through the steps of setting up an application that lets you
play audio files through a command-line interface. One of the great features of JMF is that
you don't need to know anything about the media file types in order to configure a media
player; everything is handled internally. For instance, in our previous example, we did not
need to tell the application to create a Player specifically for an MP3 file, since the MP3
setup was handled for us.

As you will see in this section, the same holds true for handling video files. JMF handles all of
the details of interfacing with the media file types.

The main difference in dealing with video media rather than audio is that we must create a
visual representation of a screen to be able to display the video. Luckily, JMF handles many
of these details for us. We will create a Player instance much like we did in the previous
example, and obtain many of the visual components to create our visual media viewer
directly from JMF objects.

In this section, we'll walk through the second example application. Refer to the
MediaPlayerFrame.java in the source code distribution to follow this exercise.

About the example
In this section we'll create an application that can display and run both audio and video
media from your local machine. As part of this exercise, we will explore some of JMF's
built-in GUI components. Familiarity with AWT and Swing will help you follow the examples,
but is not required. We won't go into much detail about the source code for the GUI unless it
relates directly to JMF GUI components. You will find that many details that are not covered
here are explained in the source code comments.

Most of the concepts, classes, and methods we'll use in this example will be familiar from the
first example. The basics of setting up the Player are almost identical. The biggest
difference is that we're going to dig a little deeper into the Player instance, particularly when
it comes to getting information about the media from the Player.

Getting started
The video player example is designed to run from the command line, much like the audio
player example did, but this example is GUI based. We start by invoking the application and
passing in the file name of the media, just as we did in the previous section. Next, the
application displays a window with components that let us manipulate the media.

In the opening lines of the MediaPlayerFrame we define the class and extend the
javax.swing.JFrame class. This is how we define our media player as a separate window
on the desktop. Any client that creates an instance of our media player class may then
display it by using the show() method defined on the JFrame class.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 9 of 25

Below is a sample screenshot showing the MediaPlayerFrame playing an MPEG movie:

Getting the GUI components
The Player interface exposes methods to obtain references to selected visual components.
In the MediaPlayerFrame we use the following components:

• player.getVisualComponent() is the visual component responsible for displaying
any video media.

• player.getControlPanelComponent() is a visual component for handling
time-based operations (that is, start, stop, rewind) as well as containing some useful
information on the media stream.

• player.getGainControl().getControlComponent() is a visual component for
handling volume (gain) operations. The getGainControl() method returns a
GainControl instance, which may be used to change gain levels programmatically.

Working with visual components
All of the above interface methods return an instance of the java.awt.Component class.
Each instance is a visual component that may be added to our frame. These components are

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 25 Java Media Framework basics

tied directly to the Player, so any manipulation of visual elements on these components will
cause a corresponding change to the media displayed by the Player.

It is important that we ensure each of these components is not null before we add it to our
frame. Because not every type of media player contains every type of visual component, we
should only add components that are relevant for the type of player we have. For instance,
an audio player generally does not have a visual component, so getVisualComponent()
returns null. You would not want to add a visual component to the audio player frame.

Obtaining media-specific controls
A Player instance may also expose other controls through its getControl() and
getControls() methods -- getControls() returns a collection of Control objects,
whereas the getControl() method looks for a specific Control. Different types of players
may choose to expose controls for operations specific to a given media type or to the
transport mechanism used to obtain that media. If you were to write an application that
handled only certain media types, you could count on certain Control objects being
available through the Player instance.

Because our player is very abstract and designed to work with many different media types,
we simply expose all the Control objects to the user. If we find any extra controls, we can
use the getControlComponent() method to add their corresponding visual component to
a tabbed pane. This way, the user will be able to view any of these components through the
player. The following code fragment exposes all the control objects to the user:

Control[] controls = player.getControls();
for (int i = 0; i < controls.length; i++) {

if (controls[i].getControlComponent() != null) {
tabPane.add(controls[i].getControlComponent());

}
}

For a real application to do something useful with a Control instance (besides being able to
display its visual component), the application would need to know the specific type of the
Control and cast it to that type. After that point, the application could use the control to
manipulate the media programmatically. For example, if you knew the media you were
working with always exposed a Control of type
javax.media.control.QualityControl, you could cast to the QualityControl
interface and then change any quality settings by calling any of the methods on the
QualityControl interface.

Using a MediaLocator
The last big difference between our new GUI-based media player and our first simple player
is that we'll use a MediaLocator object rather than a URL to create the Player instance,
as shown below:

public void setMediaLocator(MediaLocator locator) throws IOException,
NoPlayerException, CannotRealizeException {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 11 of 25

setPlayer(Manager.createRealizedPlayer(locator));
}

We'll discuss the reason for this change in a later section. For now, think of a
MediaLocator object as being very similar to a URL, in that both describe a resource
location on a network. In fact, you may create a MediaLocator from a URL, and you may
get a URL from a MediaLocator. Our new media player creates a MediaLocator
instance from a URL and uses that to create a Player over the file.

Compiling and running the MediaPlayerFrame
Compile the example application by typing javac MediaPlayerFrame.java at a
command prompt. This creates a file named MediaPlayerFrame.class in the working
directory.

To run the example application, type the following at a command prompt:

java MediaPlayerFrame mediaFile

You should replace mediaFile with the file name of a media file on your local system (either
audio or video will do). Any relative file names will be resolved relative to the current working
directory. You should see a window that displays GUI controls for manipulating your media
file. For a list of audio and video file formats acceptable for use in JMF, see Resources on
page 23 .

If the initial compilation failed, check to make sure that the JMF jar files are included in the
current CLASSPATH environment variable.

MediaPlayerFrame in action
Earlier in this section you saw a screenshot of a video player playing an MPEG video file.
The following screenshot shows an audio player playing an MP3 file:

Take a look at the complete MediaPlayerFrame source code to further study the examples in
this exercise.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 25 Java Media Framework basics

Section 4. Conceptual JMF

The JMF architecture
Now that you've seen how easy it is to play local media files using JMF, we'll take a step
back and look at the bigger picture of how you can use JMF to create more sophisticated
media-based applications. This will by no means be a comprehensive survey of the JMF
architecture. Rather, this section will give you a general idea of how high-level JMF
components can be combined to create desired effects.

The JMF component architecture is very flexible, and its components can generally be
classified in three groups:

• Input describes some sort of media that is used as an input to the rest of the process.

• A process performs some sort of action on the input. A process has a distinct input and
output. A large number of processes are available, and can be applied to an input or a
group of inputs. These processes can be chained together so that the output from one
process is used as an input to another process. In this manner multiple processes may be
applied to an input. (This stage is optional -- our first two examples contained no real data
processing, only an input from a file and an output through the Player.)

• Output describes some sort of destination for media.

From this description, you might be thinking that the JMF component architecture sounds
quite like that behind a typical stereo or VCR. It is easy to imagine using JMF in a manner
similar to that of turning on a television or adjusting the sound on a stereo. For example, the
simple act of recording a favorite TV show can be thought of in these component-based
terms:

• Input is the TV broadcast stream, carrying both audio and video information on the same
channel.

• Process is a recording device (that is, a VCR or any number of digital devices) converting
the analog or digital audio and video broadcast stream into a format suitable for copying to
a tape or some other media.

• Output is the device writing the formatted track (audio and video) to some type of media.

The JMF data processing model
The image below illustrates the JMF data processing model and gives some examples of
each type:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 13 of 25

Using this model, it is easy to follow our first two examples from file input through the audio
and video output on a local machine. In the sections that follow, we'll also explore some of
the networking functionality of JMF by broadcasting and receiving audio media over a
network.

Process model example
By chaining together JMF's input, process, and output models, we can begin to conceive of
the many media-based operations that are possible through JMF. One example would be
converting media of one type into another and storing the output to a new file. For instance,
say we wanted to convert an audio file in the WAV format to an MP3 format without
destroying the original file. The steps we would take to perform the conversion are illustrated
in the following process model:

The input for this example is a WAV file. It is processed by a media format converter, and the
output is placed in a new file. Now, let's look at each step in this model through the JMF API.
We'll use the input, process, and output models as conceptual guideposts.

JMF input
In JMF, an input is generally represented by a MediaLocator object. As stated previously,
the MediaLocator looks and acts much like a URL, in that it uniquely identifies a resource
in a network. In fact, it is possible to create a MediaLocator using a URL; we did this in our
two previous example applications.

For the purpose of our media conversion example, we could build a MediaLocator to
describe the original WAV file. As we will see in the next few sections, a MediaLocator
may also be used to represent a media stream being broadcast across a network. In this
case, instead of building the MediaLocator to identify a file on the local file system, the
MediaLocator would describe the URL of the broadcast -- much like a resource on the
Web is identified by its URL.

The difference between a MediaLocator and a URL

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 25 Java Media Framework basics

A successfully created URL object requires that the appropriate
java.net.URLStreamHandler class be installed on the system. The purpose of the
stream handler is to be able to handle the stream type described by the URL. A
MediaLocator object does not have this requirement. For example, our next application will
transmit audio over a network using the Real-Time Transport Protocol (RTP). Because most
systems do not have a URLStreamHandler installed for the RTP protocol, an attempt to
create a URL object for this purpose would fail. For this application, only the MediaLocator
object can succeed.

For more information on URL objects and on creating and registering a
URLStreamHandler, refer to the javadoc in the JDK API documentation (see Resources on
page 23).

JMF processors
When we are working with JMF, the processor component of the application is represented
by an instance of the Processor interface. You should already be somewhat familiar with
the Processor, as it is an extension of the Player interface. Because the Processor
inherits from the Player interface, it also inherits all of the valid states from the Player. In
addition, the Processor adds two more states: Configuring and Configured. These extra
states (and associated events) are used to communicate when the Processor is gathering
information from the input stream.

For our final example application, we will create a Processor to convert audio encoded in
the MP3 format into a format suitable for broadcast over a network. We will discuss the steps
to create simple Processor in a later panel.

JMF output
There are a few ways to represent the output phase of the JMF process model. The simplest
(and the one we will use in the final example) is the javax.media.DataSink interface. A
DataSink reads media content and renders it to some destination. In the audio-format
conversion scenario at the beginning of this section, the MP3 (output) file would be
represented by the DataSink. In our final example, we will use a DataSink to actually do
the work of broadcasting audio media over a network. A DataSink is created through the
Manager class by specifying a DataSource (the input to the DataSink) and a
MediaLocator (the output of the DataSink).

A DataSource instance represents input data, which is used in Players, Processors,
and DataSinks. The output of a Processor is also represented as a DataSource object.
This is how Processors can be chained together to perform multiple operations on the
same media data. This is also how the output from a Processor can be used as input to a
Player or to a DataSink (which would render the media to an output destination).

The final destination of a DataSink is specified by a MediaLocator object. Just as before,
the MediaLocator represents a network resource; that is, it's where the media stream will
be rendered.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 15 of 25

Section 5. Broadcasting and receiving media

JMF and Real-Time Transport Protocol (RTP)
Many network-friendly features are built directly into JMF, which makes broadcasting and
receiving media over a network very easy for client programmers. When a user on a network
wants to receive any type of streaming media, he shouldn't have to wait for the entire
broadcast to download to the machine before viewing the media; the user should be able to
view the broadcast in real time. This concept is referred to as streaming media. Through
streaming media, a network client can receive audio being broadcast by another machine or
even intercept a live video broadcast as it is happening.

The Real-Time Transport Protocol (RTP) is defined in IETF RFC 1889. Developed to carry
extremely time-sensitive data over a network in a quick and reliable manner, RTP is used in
JMF to provide users with a way to transport media streams to other network nodes.

In this section, we'll walk through our final example application. Here, you'll learn how to
broadcast an MP3 file stored on one machine to other machines in the same network. The
actual MP3 source file never leaves the host machine, nor is it copied to any other machine;
rather, it will be translated into a format that can be broadcast using RTP and sent over the
network. Upon being received by a client, the source file (now in the form of RTP packets)
may again be translated, this time to a format suitable for play on the receiving machine.

Refer to the MediaTransmitter.java file in the source code distribution to follow the exercises
in this section.

Setting up the process model
We can talk about our final example in terms of the process model we defined in the previous
section. On the transmitting machine, the process model would look something like this:

In fact, the source code for the MediaTransmitter object contains the following three
lines:

private MediaLocator mediaLocator = null;

private DataSink dataSink = null;

private Processor mediaProcessor = null;

These three instance variables may be mapped directly into the above process model
diagram, as follows:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 25 Java Media Framework basics

• The mediaProcessor variable is our processor; it will be responsible for converting our
audio media from the MP3 file format to a format suitable for transmission over the RTP
protocol.

• The dataSink variable is our output block.

• When we create the DataSink we will specify a MediaLocator, which is the actual
destination of the DataSink.

When we run our processed media through the DataSink, it will be transmitted to whatever
location(s) we have specified in the MediaLocator.

The RTP MediaLocator
In the previous two exercises, we created MediaLocator instances by using a URL, which
we obtained from a file. For this exercise we must create a MediaLocator that describes
the network output for media transmission; in other words, we must create a MediaLocator
that can be the destination for our audio broadcast. An RTP MediaLocator conforms to the
following form, which looks like a typical URL:

rtp://address:port/content-type

Let's look at each piece of the above URL specification:

• address is the address to which the media will be transmitted. To transmit in unicast mode
(to one specific IP address), the address should be the IP address of the intended
receiving machine. To transmit in broadcast mode (to all machines within a subnet), the
address should be the subnet address with 255 as the last section. For example, if I were
on the subnet denoted as 192.168.1 and I wanted to broadcast to all nodes, I could
specify 192.168.1.255 as the address; this would enable each node in the subnet to
listen to the broadcast media.

• port must be a port that has been agreed upon by both transmitters and receivers.

• content-type is the type of streamed media. In our case this will always be audio.

The following simple example of an RTP broadcast MediaLocator will let any machine on
the specified network receive streamed media:

rtp://192.168.1.255:49150/audio

Creating a processor
The first thing we do in the setDataSource() method is to create a Processor instance.
The following Processor will be responsible for converting our MP3 audio media into an
RTP representation of the audio:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 17 of 25

public void setDataSource(DataSource ds) throws IOException,
NoProcessorException, CannotRealizeException, NoDataSinkException {

mediaProcessor = Manager.createRealizedProcessor(
new ProcessorModel(ds, FORMATS, CONTENT_DESCRIPTOR));

In the Manager class, we can create a Processor object through one of two method types:
createProcessor() or createRealizedProcessor(). You will likely note that these
two methods act in a manner similar to the methods used in previous exercises to create a
Player. For the current example, we will create a realized Processor. We can do this
because the application we're working on is simple, and we don't care to do any real work
until after the Processor is in the Realized state.

Creating a ProcessorModel
To create a realized Processor, we need to create a ProcessorModel instance that
describes the media types for the inputs and outputs to the Processor. In order to create
the ProcessorModel, we need the following things:

• A DataSource, which is the media that will be processed (the input file).

• A javax.media.Format array, which describes the format of the input media.

• A javax.media.protocol.ContentDescriptor instance, which describes the output
format of our processor. The DataSource for the transmitter is passed in as a parameter
to the method.

Defining the input and output formats
Because our MediaTransmitter class will always be used to take one type of input media
(MP3) and create one type of output (audio RTP) these objects are declared as static. We
create a new javax.media.format.AudioFormat instance to describe the media input
type (see the javadoc to learn about the available formats). This is why our processor may
only take MP3 audio files.

We also create a javax.media.protocol.ContentDescriptor instance to describe
what we want the output of our processor to be. In our case this is an RTP media stream.
This is why our processor may only produce RTP streams.

The following code snippet shows how we set up the format and content descriptor variables,
which are used to create the ProcessorModel object.

private static final Format[] FORMATS = new Format[] {
new AudioFormat(AudioFormat.MPEG_RTP)};

private static final ContentDescriptor CONTENT_DESCRIPTOR =
new ContentDescriptor(ContentDescriptor.RAW_RTP);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 25 Java Media Framework basics

Linking inputs, processors, and outputs
Now that we have a Processor in the Realized state, we need to set up the DataSink to
be able to actually broadcast the RTP media. Creating the DataSink is simply a matter of
making another call to the Manager object, as shown below:

dataSink = Manager.createDataSink(mediaProcessor.getDataOutput(),
mediaLocator);

The createDataSink() method takes the output of our new Processor (as a
DataSource parameter) and the MediaLocator object, which we created simultaneously
with the MediaTransmitter object. From this, you can begin to see how our different
components are linked together in the process model: we take the outputs from a
Processor and use them as the inputs to other components. For this particular application,
the Processor output is used as an input to the DataSink, which is then used to transmit
media.

Creating the DataSource instance
At this point we are all but done with setting up our media player for broadcast transmission.
We just have to create the DataSource instance, which we'll use to create our processor
(that is, the parameter passed to the setDataSource() method on our
MediaTransmitter). Here's the code to create the DataSource instance:

File mediaFile = new File(args[1]);
DataSource source = Manager.createDataSource(new MediaLocator(

mediaFile.toURL()));

This code is from the main() method on the MediaTransmitter object. Here we create a
File object from the second argument passed in through the command line. We create a
MediaLocator from the file, and subsequently create a DataSource from the locator. This
newly created DataSource is a reference to the input file for the transmitter. We can then
use this DataSource to initialize the transmitter.

Starting and stopping the MediaTransmitter
We start the MediaTransmitter by calling the startTransmitting() method on it, as
shown here:

public void startTransmitting() throws IOException {
mediaProcessor.start();

dataSink.open();
dataSink.start();

}

This method starts the processor first, then opens and starts the DataSink. After this call,
the receiving machines should be able to listen in on the media transmitter.

Stopping the transmitter is just as simple. The following method call stops and closes both

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 19 of 25

the DataSink and the Processor:

public void stopTransmitting() throws IOException {
dataSink.stop();
dataSink.close();

mediaProcessor.stop();
mediaProcessor.close();

}

Compiling and running the MediaTransmitter
Compile the example application by typing javac MediaTransmitter.java at a
command prompt to create a .class file of the same name in your working directory.

To run the example application, type the following at a command prompt:

java MediaTransmitter rtpMediaLocator audioFile

This example should create a media broadcast of the myAudio.mp3 file. Don't forget to
replace rtpMediaLocator with an RTP URL for the media transmission, as discussed earlier.
You should also replace audioFile with the file name of an audio file on your local system.
Any relative file names will be resolved relative to the current working directory. You should
see some messages indicating what file is being played. To stop playing, press the Enter
key.

An example command-line interaction for the transmitter is:

java MediaTransmitter rtp://192.168.1.255:49150/audio myAudio.mp3

If initial compilation failed, check to make sure that the JMF jar files are included in the
current CLASSPATH environment variable. Refer to the MediaTransmitter source code to
further explore this application and exercise.

Receiving transmitted media
Now, you may ask, "What good is it to broadcast media if nobody can see or listen to it?"
Fortunately, setting up a client to receive broadcast media requires only a very small change
to the MediaPlayerFrame source code of our second example application.

The MediaPlayerFrame class needs one minor tweak to be able to receive and play the
transmitted audio media. In the main() method, you should comment out the following line:

mpf.setMediaLocator(new MediaLocator(new File(args[0]).toURL()));

And uncomment the following line:

mpf.setMediaLocator(new MediaLocator(args[0]));

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 25 Java Media Framework basics

This simple change allows us to create a MediaLocator object using the passed-in
String, rather than creating a File reference and using that to create the MediaLocator.
All other code remains the same.

Specifying the RTP URL
Refer to Compiling and running the MediaPlayerFrame on page 12 for instructions on how to
compile and run the MediaPlayerFrame example application. The only difference is that
now you need to specify the RTP URL for the transmitter. An example command-line
interaction for the receiver is:

java MediaPlayerFrame rtp://192.168.1.255:49150/audio

Notes on running the network media transmitter
If you only have access to one machine on a network, you can still run the transmitter
application. When you start the transmitter, you may either use a broadcast address for the
RTP URL, or specify the machine address for the machine you're working on. In order to be
able to tune into the transmission, the receiver must use the exact same RTP URL upon
being started.

If you're running a truly networked version of these examples, each machine you use needs
to have JMF installed in order to either transmit or receive streamed media. This is
necessary because both the transmitter and receiver applications make heavy use of JMF
APIs.

In either case, be sure to use the same address and port parameters in the RTP URL
specification; otherwise the media transmission will not work.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 21 of 25

Section 6. Wrapup and resources

Summary
I hope this tutorial has offered you an exciting glimpse of what you can do with the JMF API.
We have created three small applications to play local audio and video, as well as broadcast
and receive media over a network. The source code for these applications contains many
javadoc-style comments. These should help to answer any remaining questions you have.

Many JMF topics were not covered in this tutorial. Rather, we've focused on the basic
concepts and applications of JMF; with this foundation, you can more easily branch out into
other areas of study. To get started on deeper applications of JMF, you may want to follow
up on some of the advanced topics mentioned in the next panel. For further reading on any
of the topics covered in this tutorial, refer to Resources on page 23 .

Advanced topics
A number of worthwhile exercises were beyond the scope of this tutorial. With the brief
introductions below and further study on your own, you could extend the source for our three
applications, and also expand your knowledge of how JMF works. Try the following exercises
to get started:

• Media capture: JMF contains rich APIs for capturing media data. if you're interested in
doing media capture with JMF, you should begin your exploration with the
javax.media.CaptureDeviceManager class and the
javax.media.protocol.CaptureDevice interface APIs. For an advanced exercise,
consider working with CaptureDeviceManager and the CaptureDevice interface to
add media capture functionality to the GUI version of the media player application.

• Session managers: Because this tutorial is an introduction to JMF, we kept our output
representation very simple, implementing only the javax.media.DataSink output.
Another output representation is with the javax.media.rtp.SessionManager. This
manager class allows clients to create and monitor their own RTP streams and
connections. Through the SessionManager and the subsequently created streams, it is
possible to more closely monitor RTP sessions. For an advanced exercise, convert our
third demo application to use the SessionManager, and then monitor the outgoing RTP
streams and which clients are tuning in.

• Using Multicast with JMF: Our broadcast demo application explained how to send media
over a network to either one or all machines on a network. It is also possible to use the
Multicast Transport Protocol in JMF to provide for more sophisticated, multi-user networks.
The JMF User's Guide provides a more in-depth discussion of using JMF with the Multicast
protocol. See Resources on page 23 to pursue this topic further.

• Transmitting video: Our final demo application looked at how to transmit an MP3 audio
file, but JMF is very capable of sending video over a network as well. Take a look at the
API documentation for the Format and ContentDescriptor classes to get a better idea
of how this is done.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 25 Java Media Framework basics

• Import/export RTP media streams: JMF also allows RTP streams to be saved to a file for
use at a later time. For instance, a teleconference may be saved for viewing at a later time.
Because the stream is already saved in the RTP format, there is no need to convert it
again, which can result in a performance improvement for the transmitting application. Try
setting the input/output MediaLocator of the DataSink object to a file rather than a
URL. You will find this topic discussed in more depth in the JMF User's Guide.

Resources
JMF

• Download mediaplayer.jar, the complete source for the examples used in this tutorial.

• The JMF home page (http://www.javasoft.com/jmf) is the best resource for discovering
more information about JMF.

• You'll find the JMF specifications
(http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html), including API
documentation and the JMF user guides, on the Java Developer Connection. You will
need access to all of these resources if you want to do any kind of in-depth JMF
programming.

• The official JMF-supported file formats page
(http://java.sun.com/products/java-media/jmf/2.1.1/formats.html) lists all file formats that
are recognizable and playable by the JMF. The file formats page also contains references
for learning more about capture devices and RTP formats.

• MPEG-4 Video for JMF (http://www.alphaworks.ibm.com/tech/mpeg-4), from IBM
alphaWorks, is a video codec for the JMF.

RTP

• The IETF RTP RFC (http://www.ietf.org/rfc/rfc1889.txt) describes the RTP protocol in great
detail.

• Refer to the JMF API Guide
(http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html) for a much more
involved description of the RTP protocol and how it relates directly to JMF.

• Columbia University maintains a helpful RTP FAQ
(http://www.cs.columbia.edu/~hgs/rtp/faq.html).

Java technology

• The Java 2 Platform, Standard Edition (http://java.sun.com/j2se/) is available from Sun
Microsystems.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 23 of 25

mediaplayer.jar
http://www.javasoft.com/jmf
http://www.javasoft.com/jmf
http://www.javasoft.com/jmf
http://www.javasoft.com/jmf
http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html
http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html
http://java.sun.com/products/java-media/jmf/2.1.1/formats.html
http://java.sun.com/products/java-media/jmf/2.1.1/formats.html
http://java.sun.com/products/java-media/jmf/2.1.1/formats.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/mpeg-4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/mpeg-4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/mpeg-4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/mpeg-4&origin=j
http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc1889.txt
http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html
http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html
http://java.sun.com/products/java-media/jmf/2.1.1/specdownload.html
http://www.cs.columbia.edu/~hgs/rtp/faq.html
http://www.cs.columbia.edu/~hgs/rtp/faq.html
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/

• Sun's tutorials on JFC/Swing (http://java.sun.com/docs/books/tutorial/uiswing/index.html)
and AWT (http://java.sun.com/docs/books/tutorial/information/download.html#OLDui) are
good places to learn more about GUI programming in the Java programming language.

• Another Sun tutorial walks through the basics of network programming
(http://java.sun.com/docs/books/tutorial/networking/index.html) in the Java programming
language.

Multicast Transport Protocol

• Explicit Multicast (XCAST)
(http://oss.software.ibm.com/developerworks/opensource/xcast/) is a form of IP multicast,
designed to provide scalable support for very large number of multicast groups, where
these groups typically have a small number of participants. XCAST code is licensed under
the IBM Common Public License.

• Todd Montgomery maintains an MTP page (http://www.nard.net/~tmont/rm-links.html),
where you can find a comprehensive list of links related to Multicast Transport Protocol.

Additional resources

• You can find hundreds of articles about every aspect of Java programming in the
developerWorks Java technology zone (http://www-106.ibm.com/developerworks/java/).

• See the developerWorks tutorials page
(http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=50/)
for a complete listing of free tutorials.

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 25 Java Media Framework basics

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/information/download.html#OLDui
http://java.sun.com/docs/books/tutorial/networking/index.html
http://java.sun.com/docs/books/tutorial/networking/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://oss.software.ibm.com/developerworks/opensource/xcast/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://oss.software.ibm.com/developerworks/opensource/xcast/&origin=j
http://www.nard.net/~tmont/rm-links.html
http://www.nard.net/~tmont/rm-links.html
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=50/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=50/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=50/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Media Framework basics Page 25 of 25

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Installation requirements
	Downloading the installer
	Installing JMF
	About the author

	A simple audio player
	Overview
	Importing the necessary classes
	The Player interface
	Creating a Player over a file
	Player states
	Working with states
	Starting and stopping the Player
	Creating a SimpleAudioPlayer
	Compiling and running the SimpleAudioPlayer

	JMF user interface components
	Playing video
	About the example
	Getting started
	Getting the GUI components
	Working with visual components
	Obtaining media-specific controls
	Using a MediaLocator
	Compiling and running the MediaPlayerFrame
	MediaPlayerFrame in action

	Conceptual JMF
	The JMF architecture
	The JMF data processing model
	Process model example
	JMF input
	The difference between a MediaLocator and a URL
	JMF processors
	JMF output

	Broadcasting and receiving media
	JMF and Real-Time Transport Protocol (RTP)
	Setting up the process model
	The RTP MediaLocator
	Creating a processor
	Creating a ProcessorModel
	Defining the input and output formats
	Linking inputs, processors, and outputs
	Creating the DataSource instance
	Starting and stopping the MediaTransmitter
	Compiling and running the MediaTransmitter
	Receiving transmitted media
	Specifying the RTP URL
	Notes on running the network media transmitter

	Wrapup and resources
	Summary
	Advanced topics
	Resources
	Feedback

