
1. Overview
• complete data mining process:
◊ (planning)
◊ (preparation)
◊ preprocessing
◊ learning
◊ evaluation
◊ (analysis)

• MIR (= music information retrieval)
• basic question: what is similarity?
• genre classification based on spectral similarity:
◊ database of songs
◊ MFCC (= mel frequency ceptstrum coefficient)
◊ GMM (= gaussian mixture model) per song
◊ log-likelihood of songs given GMMs
◊ distance matrix
◊ nearest neighbour classification

2. The very basics of Statistical Pattern Recognition
• rote learning, lookup-table:
◊ store every possible image with class label
◊ problem: 256x256 pixel, 8bit/pixel -> 10^158000 images

• generalization: classifiers must classify previously unseen image vectors
• preprocessing: combine large number of input variables to create features
• use thresholds for minimization of misclassification
• classification:
◊ vector x represents image
◊ variable y represents result
◊ mathematical function with adjustable parameter w: yk= yk  x ,w
◊ concept space: all possible distinct functions 
◊ language bias: restrict the set of all concepts
◊ search bias: prefer some functions to others

• regression: continuous variables represent output
• classification and regression are particular cases of function approximation
• polynomial curve fitting (way of function approximation):
◊ high bias:
□ little flexibility
□ low complexity
□ under-fitting

◊ high variance:
□ too much flexibility
□ high complexity
□ over-fitting

• use different training and test sets



3. Bayes and all that!
• posterior probability P C k∣X
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• likelihood (class conditional probability) P  X 1∣C k 
• prior probability P C k 
• joint probability P C k , X
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• assign image to class with largest posterior (minimize misclassification)
• sometimes priors in training data are not representative (e.g. x-ray images + cancer)
• non-bayesian approaches are often just approximations (easier to estimate but not optimal)

4. Probability Density Estimation
• parametric methods:
◊ assume specific form of density model (gaussian or normal distribution)
◊ parameters optimized using best fit to data
◊ estimate mean and covariance matrix by using maximum likelihood
◊ minimizing negative log likelihood is more convenient
◊ pro: easy to evaluate
◊ con: tied to specific functional form

• non-parametric methods: 
◊ form of density determined entirely by data
◊ kernel based methods: data point x, fixed volume V, estimate points falling in V
◊ nearest neighbour methods: data point x, number of nearest neighbours K, estimate 

volume V which contains K nearest neighbours
◊ pro: general form (driven by data)
◊ con: number of variables grows with size of data

• semi-parametric methods:
◊ “best of both worlds”
◊ GMM iterative procedure:
□ make initial guess of GMM parameters
□ use old values -> evaluate right sides -> new values -> smaller error on E ->
□ replace old by new values
□ E-step: evaluate posteriors for all components
□ M-step: evaluate means, variances and mixing posteriors

• preprocessing to calculate MFCCs:
◊ convert to frames
◊ discrete fourier transform
◊ log of amplitude spectrum
◊ mel-scaling and smoothing
◊ discrete cosine transform

• modelling of songs using GMMs
◊ for each song train a GMM using EM (input: vectors of MFCCs)
◊ computation of similarity: for every combination of songs and models compute negative 

log-likelihood
◊ K-nearest neighbour classification:
□ for new data x find K nearest neighbours



□ assign majority class of K to x
□ draw hypersphere which contains K points around x
□ nearest neighbour rule directly estimates posteriors
□ one nearest neighbour error is maximal twice that of the bayes optimal classifier

• artist vs. genre classification: use artist filter to make sure that all songs of an artist are either 
in the training or test set

5. Advanced Classification
• novelty/outlier detection: identification of new/unknown data that a machine learning 

system is not aware of during training
• ratio reject: reject X if X E [ X tr ]s∗std  X tr 
• doubt levels: if max(posterior) > doubt_level => classify, else don't classify
• KNN-reject:
◊ all K neighbours must agree
◊ qualified majority of neighbours must agree

6. Statistical Evaluation of Machine Learning Experiments
• K-fold cross-validation:
◊ divide into K equal sized parts
◊ each part used as a test for classifier trained on all other parts
◊ each part is used for testing exactly once
◊ computationally costly
◊ less random influences
◊ stratified CV:
□ ensure the same class distribution in each fold as in the full training data
□ reduces variance across folds

◊ leave-one-out CV:
□ each fold contains only a single example
□ unbiased error estimate
□ possibly high variance
□ computationally very costly

7. Unsupervised Learning I: Visualisation
• goals of unsupervised learning:
◊ find useful representation of data
◊ find clusters
◊ dimensionality reduction
◊ find hidden causes/sources of data
◊ model data density
◊ find patterns

• goal of visualisation: find low dimensional projection of high dimensional data that captures 
most correlation

• PCA (= principal component analysis):
◊ transform vectors x linearly to uncorrelated (= orthogonal) vectors by finding a new 

basis of the input space
◊ first new vector should explain most of the variance in data
◊ second should explain remaining, etc.



• multi dimensional scaling:
◊ lower dimensional projection in which points that are close to each other in the high-

dimensional input space are also close in the low-dimensional output space
◊ Sammon mapping (“chain link”)

• ICA (= independent component analysis):
◊ finds hidden causes/sources in data
◊ blind separation of sources
◊ cocktail party problem
◊ 2 variables are uncorrelated if their covariance is 0
◊ if 2 variables are independent they are also uncorrelated, but not vice versa
◊ not more than 1 gaussian source allowed
◊ ICA used for artefact removal in EEGs

8. Unsupervised Learning II: Clustering
• divide observations into groups so that members of a group are alike
• mapping that assigns each input vector a reproduction (codebook) vector (out of a finite 

alphabet)
• K-means clustering:
◊ start with initial codebook
◊ partition data according to codebook
◊ update codebook

• partitioning methods divide data into number of groups
• hierarchical methods produce trees of clusters:
◊ agglomerative algorithms: start with each point as cluster and merge clusters
◊ divisive algorithms: start with one big cluster and divide it iteratively

• HMM (= hidden markov model)
◊ models locally stable probability densities (using GMMs) and the according transition 

probabilities between these states
◊ markov chain property: probability of next state only depends on previous state
◊ evaluation problem: given HMM M, observation sequence O, calculate probability that 

M has generated O
◊ decoding problem: given HMM M, observation sequence O, calculate most likely 

sequence of hidden states that produced O
◊ learning problem: given observation sequences O, general structure of HMM, determine 

parameters M of HMM that fit training data best
◊ better describe spectral similarity of songs
◊ advantage not visible when doing genre classification based on spectral similarity

9. Supervised Learning
• entropy: amount of impurity/randomness 
• infogain: expected reduction of entropy
• constructing decision tree:
◊ constructed in a top-down recursive divide-and-conquer manner
◊ at the beginning all training samples are at the root
◊ attributes are categorical (if continuous, discretise them)
◊ test attributes are selected on the basis of a statistical measure
◊ examples partitioned recursively based on selected attributes

• stopping construction of decision tree:



◊ all samples of a node belong to the same class
◊ no remaining attributes
◊ no samples left

• overfitting decision tree:
◊ too many branches
◊ may reflect anomalies due to noise or outliers
◊ prepruning: stop tree construction early
◊ postpruning: remove branches (use holdout data to chose best pruned tree)

• SVM (= support vector machine):
◊ points on separating hyperplane are the support vectors
◊ SVMs pick best separating hyperplane according to the maximum margin criterion
◊ Lagrange formulation:
□ constraints replaced by lagrangian multipliers
□ training data will only occur as dot products

◊ kernel trick: if boundary is not linear use function to map data into another space where 
it can be linearly separated

◊ only few support vectors needed for training
◊ no overfitting despite high dimensionality

• Multi-Layer Perceptron:
◊ learns non-linear mapping from input to output
◊ learns non-linear decision boundaries
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